Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 12(1): 6985, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815598

ABSTRACT

During the COVID-19 pandemic, many countries implemented international travel restrictions that aimed to contain viral spread while still allowing necessary cross-border travel for social and economic reasons. The relative effectiveness of these approaches for controlling the pandemic has gone largely unstudied. Here we developed a flexible network meta-population model to compare the effectiveness of international travel policies, with a focus on evaluating the benefit of policy coordination. Because country-level epidemiological parameters are unknown, they need to be estimated from data; we accomplished this using approximate Bayesian computation, given the nature of our complex stochastic disease transmission model. Based on simulation and theoretical insights we find that, under our proposed policy, international airline travel may resume up to 58% of the pre-pandemic level with pandemic control comparable to that of a complete shutdown of all airline travel. Our results demonstrate that global coordination is necessary to allow for maximum travel with minimum effect on viral spread.


Subject(s)
COVID-19 , Influenza, Human , Bayes Theorem , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Influenza, Human/epidemiology , Pandemics/prevention & control , Travel
2.
Stat Med ; 40(24): 5351-5372, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1347431

ABSTRACT

For the analysis of COVID-19 pandemic data, we propose Bayesian multinomial and Dirichlet-multinomial autoregressive models for time-series of counts of patients in mutually exclusive and exhaustive observational categories, defined according to the severity of the patient status and the required treatment. Categories include hospitalized in regular wards (H) and in intensive care units (ICU), together with deceased (D) and recovered (R). These models explicitly formulate assumptions on the transition probabilities between these categories across time, thanks to a flexible formulation based on parameters that a priori follow normal distributions, possibly truncated to incorporate specific hypotheses having an epidemiological interpretation. The posterior distribution of model parameters and the transition matrices are estimated by a Markov chain Monte Carlo algorithm that also provides predictions and allows us to compute the reproduction number Rt . All estimates and predictions are endowed with an accuracy measure obtained thanks to the Bayesian approach. We present results concerning data collected during the first wave of the pandemic in Italy and Lombardy and study the effect of nonpharmaceutical interventions. Suitable discrepancy measures defined to check and compare models show that the Dirichlet-multinomial model has an adequate fit and provides good predictive performance in particular for H and ICU patients.


Subject(s)
COVID-19 , Models, Statistical , Pandemics , Bayes Theorem , COVID-19/epidemiology , Humans , Multivariate Analysis , Uncertainty
3.
BMC Public Health ; 20(1): 1868, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-962814

ABSTRACT

BACKGROUND: The global impact of COVID-19 and the country-specific responses to the pandemic provide an unparalleled opportunity to learn about different patterns of the outbreak and interventions. We model the global pattern of reported COVID-19 cases during the primary response period, with the aim of learning from the past to prepare for the future. METHODS: Using Bayesian methods, we analyse the response to the COVID-19 outbreak for 158 countries for the period 22 January to 9 June 2020. This encompasses the period in which many countries imposed a variety of response measures and initial relaxation strategies. Instead of modelling specific intervention types and timings for each country explicitly, we adopt a stochastic epidemiological model including a feedback mechanism on virus transmission to capture complex nonlinear dynamics arising from continuous changes in community behaviour in response to rising case numbers. We analyse the overall effect of interventions and community responses across diverse regions. This approach mitigates explicit consideration of issues such as period of infectivity and public adherence to government restrictions. RESULTS: Countries with the largest cumulative case tallies are characterised by a delayed response, whereas countries that avoid substantial community transmission during the period of study responded quickly. Countries that recovered rapidly also have a higher case identification rate and small numbers of undocumented community transmission at the early stages of the outbreak. We also demonstrate that uncertainty in numbers of undocumented infections dramatically impacts the risk of multiple waves. Our approach is also effective at pre-empting potential flare-ups. CONCLUSIONS: We demonstrate the utility of modelling to interpret community behaviour in the early epidemic stages. Two lessons learnt that are important for the future are: i) countries that imposed strict containment measures early in the epidemic fared better with respect to numbers of reported cases; and ii) broader testing is required early in the epidemic to understand the magnitude of undocumented infections and recover rapidly. We conclude that clear patterns of containment are essential prior to relaxation of restrictions and show that modelling can provide insights to this end.


Subject(s)
COVID-19/prevention & control , Global Health , Pandemics/prevention & control , Bayes Theorem , COVID-19/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL